

PolymBlend® User guide for processing by electrospinning

This guide contains the recommended steps for processing PolymBlend® by electrospinning to obtain high performance nonwoven membranes as well as the thermal wetting protocol to make them hydrophobic membranes.

The recommended concentration is 13% w/w (10 g of PolymBlend® in 67 g of solvent). PolymBlend® is supplied in the form of two components: copolymer A and copolymer B. A 1:1 ratio between these two copolymers is recommended, i.e. for 67 g of solvent we recommend using 5 g of copolymer A and 5 g of copolymer B. This ratio provides a polymer blend containing 41% of hydroxylated monomers.

Copolymer A confers stiffness and hardness, whilst copolymer B provides flexibility and elasticity. Thus, the mechanical properties of the final material can be tuned by changing the ratio between these two copolymers.

The % of hydroxylated monomers can also be tuned by varying the ratio between the two copolymers; see the Technical Data Sheet for the calculation of the amount of hydroxylated monomers.

PolymBlend[®] can be solubilised in DMF, DMSO, dioxane, NMP and any other solvent of similar polarity. For the electrospinning process we recommend DMF as a solvent.

The addition of HCl to the mixture is recommended to increase the conductivity and to facilitate the electrospinning process.

The solubilization protocol:

- 1. Weigh the correct amounts of copolymers A and B in an adequate vessel.
- 2. Add the correct amount of solvent (DMF is the recommended solvent).
- 3. Use magnetic agitation until complete dissolution of the two copolymers (for 13 % w/w we recommend maintaining the magnetic stirring for 24 h).
- 4. Add 45 μ L HCl (37%) and maintain the magnetic stirring for 1 hour more to be sure that HCl has been totally mixed with the polymer blend.

The electrospinning processing parameters:

- 1. Put the solution into the electrospinner container.
- 2. Set the conditions and start the production.

The following tables show the standard conditions for the electrospinning process:

Table 1. Standard parameters of the electrospinning process using a drum collector (30 cm length and 20 cm diameter)

	Multi-needle head	Simple head
Parameter	(10 needles)	(1 needle)
Collector voltage	-9 kV	-2 kV
Injector voltage	+14 kV	+9 kV
Caudal (Q)	5 mL/h	1 mL/h
Drum rotation speed (ω)	500 rpm	500 rpm
Distance injector-collector (δ)	15 cm	26 cm
Temperature (T)	20-25°C	20-25°C
Relative humidity (RH)	25-30%	25-30%

Table 2. Standard parameters for electrospinning using a flat collector

	Multi-needle head	Simple head
Parameter	(10 needles)	(1 needle)
Collector voltage	-9 kV	-2 kV
Injector voltage	+14 kV	+9 kV
Caudal (Q)	5 mL/h	1 mL/h
Distance injector-collector (δ)	15 cm	25 cm
Temperature (T)	20-25°C	20-25°C
Relative humidity (RH)	25-30%	25-30%

The thermal wetting protocol:

The membrane obtained by processing PolymBlend® by electrospinning is hydrophobic. To make it hydrophilic, it must be treated with the following thermal wetting protocol:

- 1. Cut the membrane to size of the water bath and system used to stretch it.
- 2. Use something to keep the mat stretched throughout the wetting protocol.
- Introduce the stretched membrane into a water bath at 43 °C until complete humectation. The average time for a complete humectation of a 200 μm thickness mat produced by 1:1 ratio between the two copolymers, is 5 hours, approximately.
- 4. Dry the membrane at room temperature and keep it in a dry, dark place.