Introduction
The injectable, long-acting formulation of octreotide marketed as Sandostatin® LAR utilizes glucose-initiated poly(lactide-co-glycolide) (Glu-PLGA). A proposed generic product referencing Sandostatin® LAR needs to match the reference listed drug for qualitative and quantitative (Q1/Q2) sameness of Glu-PLGA. The purpose of this study is to utilize nuclear magnetic resonance (NMR) and enzymatic glucose assays to analyze the composition of Glu-PLGA used in Sandostatin® LAR.

Methods
A sample of Sandostatin® LAR (Novartis, 30 mg) was deformed by dissolution in dichloromethane (DCM), filtration, and reprecipitation in hexane followed by vacuum drying. Samples of the extracted Glu-PLGA were dissolved in chloroform-D (CDCl3) and analyzed by NMR to determine the lactide:glycolide (L:G) ratio [1] and Rε (blockiness) [2]. Separately, the extracted Glu-PLGA was hydrolyzed at 50°C in 0.1 M NaOH followed by drying under vacuum. The obtained residue was analyzed using a colorimetric (based on glucose oxidase) assay to determine the presence of glucose. The resultant material was measured for absorbance at 570 nm by UV-Vis spectrophotometer. A linear PLGA was also hydrolyzed and analyzed as control to confirm specificity of enzymatic glucose assay.

Results
The molar lactide content across 3 samples was determined to be 56.8±1.2% (mean±SD, n = 3) and the Rε value was determined to be 1.46±0.07 (mean±SD, n = 3). The presence of glucose could not be readily confirmed by NMR methods (Figure 1) potentially due to peak overlaps or shielding effects by PLGA. The degraded residues of Glu-PLGA were assayed for the glucose content. The absorbance of the solution at 570 nm was 0.268, and the solution appeared pink, indicating the presence of glucose. The linear PLGA control has an absorbance of 0.123, but appears visually the same as blank as shown in Figure 3. The assay resulted in non-linear response from standard solutions, making it difficult to obtain quantitative data for the glucose content. The method does, however, provide a qualitative assessment for the presence of glucose.

Conclusion
Determination of PLGA properties such as the lactide content and Rε from Glu-PLGA can be accomplished by NMR methods. The presence of glucose was qualitatively confirmed by a colorimetric assay of degraded Glu-PLGA solution. These methods can be used for quality control and establishing Q1/Q2 sameness.

References

Acknowledgements
This work was supported by BAA Contract # HHSF223201710123C from the U.S. Food and Drug Administration (FDA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the FDA.