Solvent-dependent PLGA solubility for separation of PLGAs with different L:G ratios

J. Hadar¹, <u>J. Garner¹</u>, S. Skidmore¹, H. Park¹, K. Park¹, D. Kozak², Y. Wang²

¹Akina, Inc., West Lafayette, IN 47906 USA

²Office of Research and Standards, Office of Generic Drugs, CDER, Food and Drug Administration, Silver Spring, MD 20993, USA jg@akinainc.com

Introduction

- Poly(lactide-co-glycolide) (PLGA) is a group of biodegradable polymers commonly used in various injectable long-acting depot formulations.
- There are many different types of PLGAs, resulting from different lactide:glycolide (L:G) ratios, endcaps, and molecular weights.
- Ensuring qualitative and quantitative (Q1/Q2) sameness between a reference listed drug and a proposed generic formulation in injectable depot formulations requires careful characterization of the PLGA components.

Purpose

• To develop a method to separate and characterize different PLGAs when used together in one product by leveraging their different solubilities in various solvents based on their L:G ratios.

Methods

Solubility Assay

- Initially, a series of PLGA polymers (MW of 80 ± 20 kDa) were characterized to determine their L:G ratios based on proton nuclear magnetic resonance (HNMR). For each PLGA, 100 mg was weighed into a tared glass vial and 4 ml of solvent was added. Each PLGA/solvent vial was then placed in shaking orbital incubator (100 RPM) overnight at a controlled temperature (30, 40, or 50°C).
- The solution was removed, and the remaining PLGA was vacuum dried to determine the remaining mass.

Separation Protocol

- Microparticles were prepared from PLGA 85:15 (85L) and 57:43 (57L) (Table 1), respectively, by emulsifying a dichloromethane (DCM)-polymer solution into an excess of 0.5% polyvinyl-alcohol (PVA) (Mowiol 4-88) solution and sizing/ collecting the particles by filtration. The molecular weight of the PLGAs were characterized by gel permeation chromatography (GPC) (Table 1).
- The microparticles were dry-blended along with excipients and additives listed in Table 1. This mixture was separated into 283 mg vials to create an example formulation.
- Each sample was transferred into tared glass centrifuge tubes containing a tared 3 mm glass ball.
- Each tube was washed with water (10 mL) (wash step: 4 °C/overnight), ethanol (10 mL), and hexane (10 mL) (wash step: 100 RPM/ 30 °C/ 1 hour/centrifuge (3400 RPM/ 5 min).
- The remaining material was dried at 50°C overnight, and the mass was recorded (take NMR 'SAMPLE-TOTAL')
- The sample was dissolved in 10 mL chlorobenzene (100 RPM/ 30°C/ overnight) and centrifuged to separate away PLGAs with high lactide ratios (>75L).
- The remaining sample was dissolved in 10 mL acetone (100 RPM/ 30°C/ overnight) and centrifuged to separate away PLGAs with low lactide ratios (<75L).

Table 1. The composition of dry-blended microparticles.

Component	Mass (mg)	MW*
PLGA 57L microparticles	1,123.7	48,568
PLGA 85L microparticles	1,129.0	85,720
Mannitol, USP	917.5	NA
Sodium CMC	314.2	NA
Polysorbate 80	23.8	NA

*Molecular weights of PLGAs of prepared microparticles were measured by GPC.

Results

- The solubility results for PLGA include 'full solvents' which dissolve PLGAs regardless of L:G ratios (acetone, acetonitrile, anisole, chloroform, dichloromethane, dimethylformamide, dimethylsulfoxide, ethyl acetate, and dioxane) and non-solvents which do not dissolve PLGAs (castor oil, ethanol, decanol, diethyl ether, hexane, lactic acid, and methanol).
- The solubility results also include semi-solvents, which have variable solubility for PLGA depending on the L:G ratio in the PLGA polymer.
- Table 2 shows select data from this study.

Table 2. Average mass dissolved (%) of 25 mg/ml solution (N=3).									
	Temperature			Temperature			Temperature		
L:G Ratio	50:50		75:25			88:12			
Solvent	30°C	40°C	50°C	30°C	40°C	50°C	30°C	40°C	50°C
Ethyl Acetate	99±0	98±0	97±3	99±0	98±0	97±0	98±0	98±0	98±0
Chlorobenzene	1±0	0±0	-7±1	99±0	99±0	99±0	97±1	98±0	97±1
n-Butyl Acetate	0±3	2±0	2±1	53±5	79±7	97±1	93±3	94±1	96±1

• Trends were noticed for esters and ketones in that longer alkyl chains resulted in greater selectivity for lactide content (Fig 1, 2)

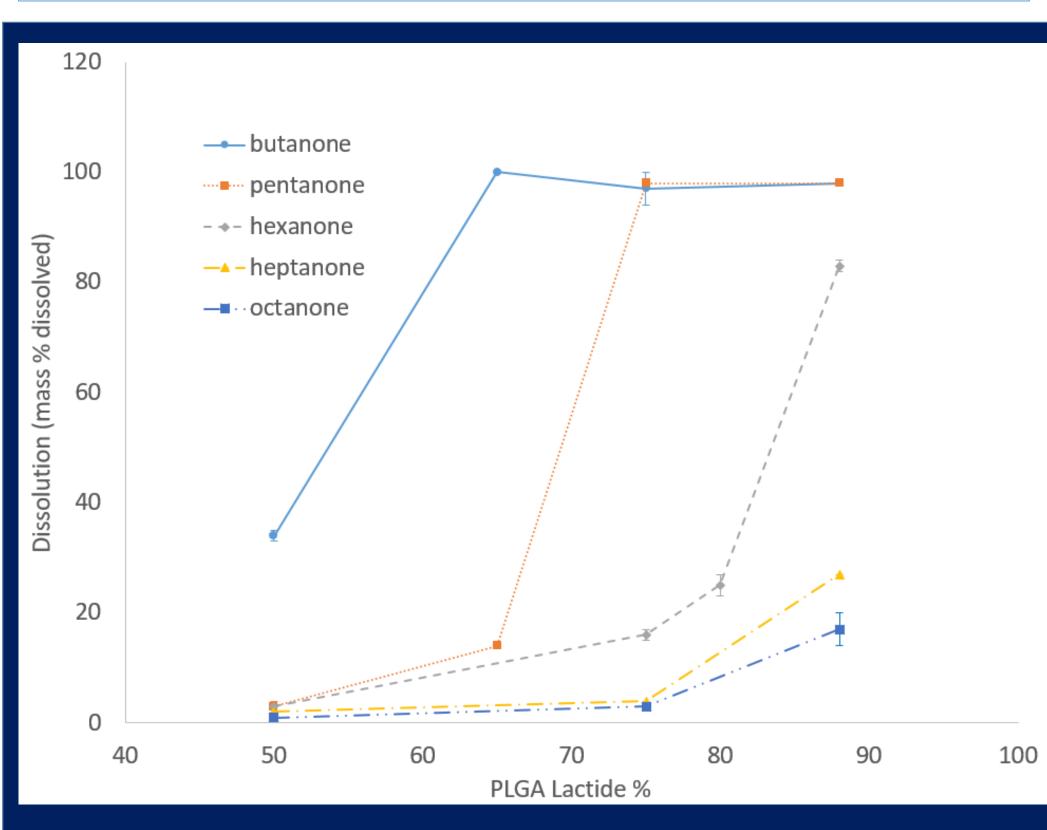


Fig. 1. PLGA solubility in ketones at 30 °C.

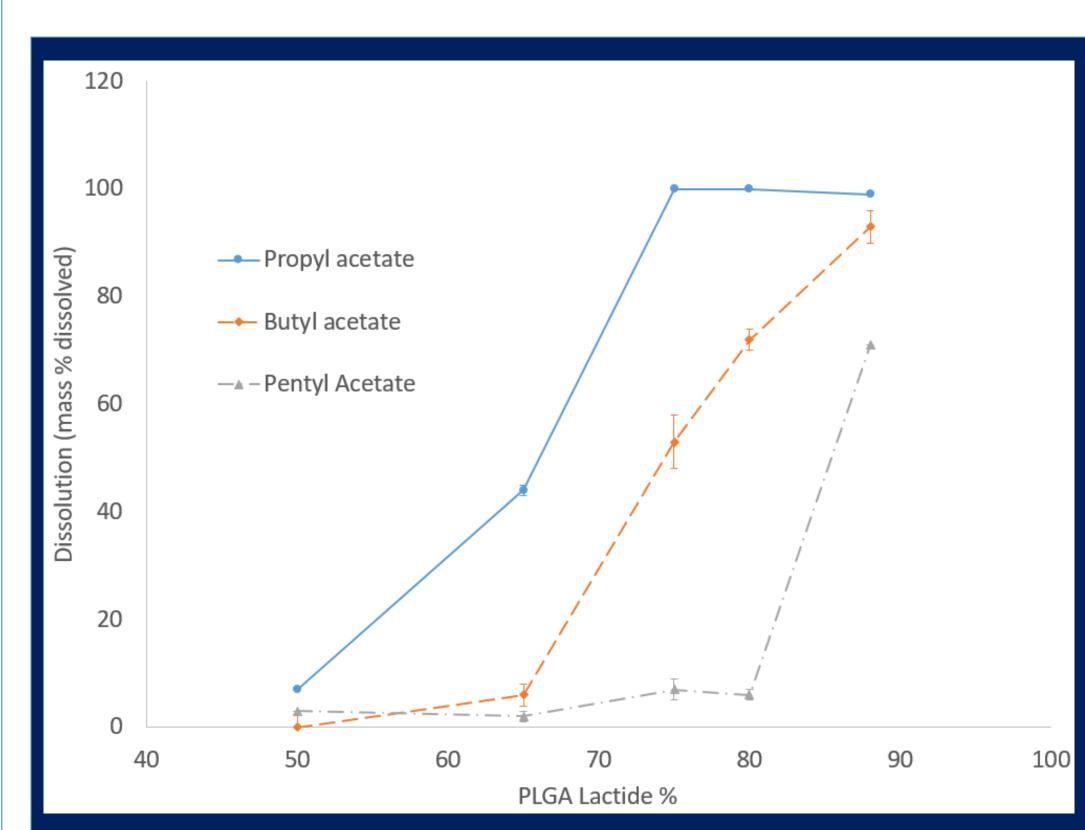


Fig. 2. PLGA solubility in esters at 30 °C.

- From this work a series of solvents were identified which showed an array of dissolution properties (Fig 3).
- Based on this capacity of solvents to variably dissolve components, a test separation assay was performed for a prepared mixture of polymer microparticles with two different PLGA types.
- Results from test separation protocol are listed in Table 3.
- The resulting NMR determined that lactide ratios were within ± 4 % of the original polymer which is below the acceptable range of ± 5 % lactide ratio.
- The average resulting molecular weights determined were within <1,500 Da of those from the original polymer with no significant difference between the molecular weights before and after separation.

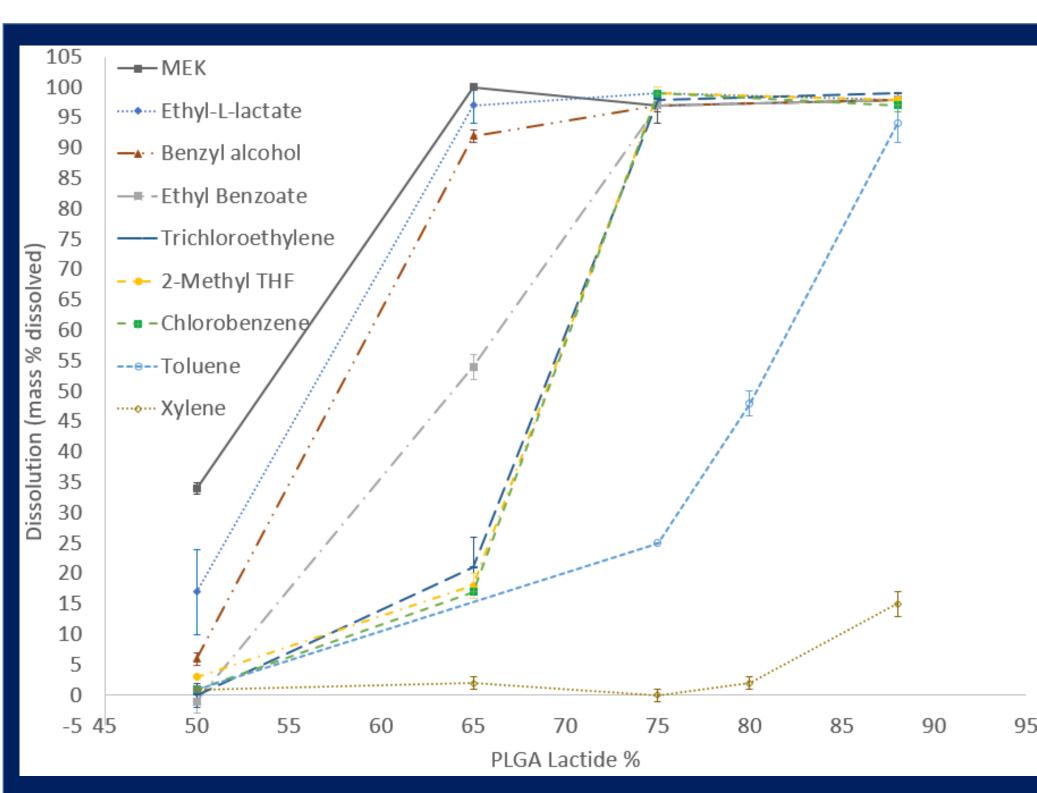


Fig. 3. PLGA solubility in various solvents at 30 °C.

Table 3. Characterization of PLGAs separated based on the protocol as compared with original polymers.

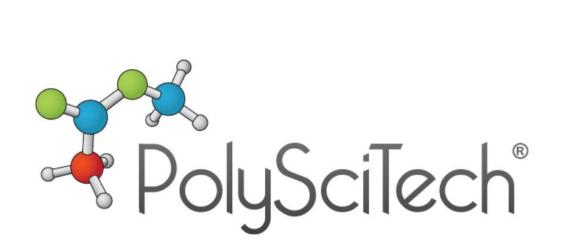
Description	Measured*	Original
Mixture (L%) ¹	69.5±0.8	NA
High-Lactide Fraction ¹	83.2±0.3%	85%
High-Lactide Fraction (MW) ²	86,202±985	85720
Low-Lactide Fraction ¹	53.8±0.2%	57%
Low-Lactide Fraction (MW) ²	$47,269 \pm 1,960$	48568
Weight ratio (High	1.10 ± 0.09	1.004
Lactide/Low Lactide) ³		

*Average \pm Standard deviation, n = 6.

1: HNMR, 2: GPC, 3: gravimetric measurement.

Conclusion

In the absence of semi-solvent effect, mixtures of PLGAs of varying L:G ratios remain inextractable. However, by leveraging the natural tendencies of selected solvents to preferentially dissolve PLGAs of certain L:G ratio, mixtures of the two types of PLGAs can be separated and characterized individually.


This technology enables the Q1/Q2 characterization of complex mixtures of PLGAs from a single sample to ensure the sameness between a proposed generic and an reference listed drug formulations.

Trends regarding the semi-solvent effects and PLGA L:G ratios have been identified. The mechanisms of the semi-solvent effects need to be fully elucidated with further studies. Understanding such mechanisms allows rational design of PLGA depot formulations with desirable drug release kinetics.

Acknowledgements

This work was supported by BAA Contract # HHSF223201610091C from the U.S. Food and Drug Administration (FDA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the FDA.

